
EECS 482 Introduction to Operating Systems
Spring/Summer 2020

Lecture 24: Distributed file systems

Based on slides by Harsha V. Madhyastha

Nicole Hamilton
https://web.eecs.umich.edu/~nham/

nham@umich.edu

https://web.eecs.umich.edu/%7Enham/
mailto:nham@umich.edu

Agenda
1. Final exam.

2. Project 4.

3. Grading.

4. Student evals.

5. Distributed file systems.

2

Agenda
1. Final exam.

2. Project 4.

3. Grading.

4. Student evals.

5. Distributed file systems.

3

Final exam
Just like the midterm.

Online using Crabster.org
Thu Aug 20 3:00 to 5:00
pm EDT.

We will post a link via
Canvas and Piazza once
the exam is live.

We will monitor Piazza for
questions.

4

Material for the final:

1. Everything except my bonus
lecture.

Final exam policy
The exam will be “open everything” except collaboration.

You can use any existing resource, including lecture notes, the book,
your project solutions, you can even use Google, and your IDE.

The only thing you can’t do is collaborate with others, including using
social media to solicit help. If you can find an existing answer on
stackexchange that’s helpful, that’s fair game. But you can’t post a
question.

Also, parts of the exam ask for short answers, which must be in your
own words. Cutting and pasting word-for-word from an existing
source and “close copying” will be treated as plagiarism and
reported to the Honor Council.

5

Agenda
1. Final exam.

2. Project 4.

3. Grading.

4. Student evals.

5. Distributed file systems.

6

Project 4
No free space list or map is kept in the filesystem, so it has to be recreated
each time you initialize by traversing the entire directory structure.

Could be a real problem with a multi-TB filesystem.

Alternatives:

1. Mark a shadow block as in use when allocated, even before it’s linked
into the directory. Plan to occasionally leak during crashes, run a utility
to find lost space.

2. Use a logging scheme with commits.

7

Project 4 Testing
State space coverage

Test every request type with every possible state.

For example: FS_CREATE
File vs. directory.
In root directory vs. elsewhere.
Adding direntry in first data block vs. later.
Free direntry at the beginning vs. later.

Test close to resource limits.
Disk size, max path name, max file name, …

8

Project 4 Testing
Verifying concurrency

Test with a pair of requests.
Insert sleep() calls into your server so you can test race
conditions.
Consider every combination of request types.
Vary commonality in pathnames.
Block around “slow” operations.

Macro test cases
Crash or deadlock with lots of concurrent requests.
Check for memory and filesystem leaks.

9

Agenda
1. Final exam.

2. Project 4.

3. Grading.

4. Student evals.

5. Distributed file systems.

10

Grading
The isolation forced on us by the pandemic is hard on everyone but
it’s especially hard on young people.

In a class like this, it’s hard to remain engaged in online-only lectures
and it’s hard to effective and productive working on a team that’s
only virtual.

The workload is also quite significant, more than in many classes.

This is the first time offered in the summer and could be hard to
manage on top of an internship.

And with a smaller class, there was a much less active Piazza forum
where you might pick up hints from answers to other people’s
questions.

11

Grading
So, I know this is a really hard semester for some of you and you
may be worried, if you didn’t do well on P3, “Will I pass?”

I intend to give you a curve that is at least as generous, e.g.,
percentage of class receiving an A+ or an A, as in past semesters
for 482.

I intend to do my best to pass everyone.

12

Agenda
1. Final exam.

2. Project 4.

3. Grading.

4. Student evals.

5. Distributed file systems.

13

Student evals
Please get them done.

They are super important.

The 370 and other questions …

If you wonder if they matter …

14

Agenda
1. Final exam.

2. Project 4.

3. Grading.

4. Student evals.

5. Distributed file systems.

15

Distributed file systems
Remote storage of data that appears local
Examples:

Andrew File System (AFS)
Dropbox
Google Drive

Benefits?
Share files across users.
Uniform view of file system across
machines.

16

Caching for performance
Bottleneck if many clients interacting with server?

Server
Network

Benefits of client-side caching:
Improves server scalability.
Better latency and throughput.
Reduces network traffic.
Can improve availability if the remote server crashes.

17

Client-side caching
Two approaches:

1. Migrate: Transfer sole copy from server to client.
Simpler to implement. No need to keep copies in sync.
Concurrent reads leads to ping-ponging as the sole copy
keeps getting moved.

2. Replicate: Create additional copy at client.
Clients can read from local copy.
Must worry about inconsistent replicas.

How do the two approaches compare?

18

Handling writes with caching
If clients use write-back caching (writing dirty pages only when
they’re evicted) other clients may read stale data.

How to preserve consistency?
Write-through cache, updating the copy at server on every write?
Update all copies or invalidate other copies.
Pros and cons?
The invalidation message is probably a lot smaller than the copy
and some copies may never be referenced again.

19

State machine for cached copy

20

invalid

sharedexclusive

this client
reads the file

this client
writes the file

this client writes the file

another client
writes the file

another client
writes the file

another client reads the file

Similar to anything else we’ve discussed previously?

Invalidation protocol

21

Client Client

Read file

Server

Read file
A

A

Shared?
Shared?

Shared, val=A
Shared, val=A

A

Exclusive?
Invalidate

AckAck
B

Write file

Read fileShared?
Downgrade

Ack, val=B B

Ack, val=B B

Server waits for
all the clients to
acknowledge the
invalidation before
granting the
exclusive use.

Order of operations

Is it necessary to
wait for invalidations
to be
acknowledged?

22

Client Client

Read file

Server

Read file
A

A

Shared?
Shared?

Shared, val=A
Shared, val=A

A

Exclusive?
Invalidate

B

Write file

Read fileShared?
Downgrade

Ack, val=B B

Ack, val=B B

Order of operations

23

Client Client

Read file

Server

Read file
A

A

Shared?
Shared?

Shared, val=A
Shared, val=A

A

Exclusive?

Invalidate
B

Write file

Is it necessary to
wait for invalidations
to be
acknowledged?

Yes, because the
invalidation message
may take a long time
to get delivered.

Read file (A not B!)

Alternate approach to prevent inconsistency.
Allow clients to modify replicas freely.
Server detects and resolves conflicting updates.

How to detect conflicts?
Assign a version to each object (file, etc.)
Increment the version on update.
Conflict if server version >= client version.

24

Optimistic concurrency control

Conflicting operations

25

Client Client

Read file

Server

Read file
1

1

Fetch
Fetch

data,ver=1
data,ver=1

1

2

Write file

Write,ver=2

2

Write,ver=2 2

Write file

Discover you have
an old copy only
when you try to
write.

Means you could be
reading old data but
allows updating
offline. (Dropbox
model.)

Load balancing across servers
Two options:

1. Partitioning clients across servers not very sensible.
2. Partition files across servers makes more sense for sharing

files.

How to find a file?
1. Ask a directory server.
2. Hash-based mapping:

If N servers, store file foo on server hash(foo) % N
What if we need to add or remove a server?
File is now mapped to server hash(foo) % (N+1)

26

Load balancing across servers

27

A B C D E F

A B C D E F G

0 Max hash
value

A B C D E F G

Consistent hashing

28

server3

server2

server4

server1

file1

file3

file2

file4

file5

0x00000xffff

Adding a server

29

server2

server4

server1

file1

file3

file2

file4

file5

0x00000xffff

server5

server3

Replication across servers
More servers  Increased likelihood of failure.

Replicate files to tolerate failures.
Example: Primary + backup

Write data by writing to both primary AND backup.
Read data by reading from primary OR backup.

30

Primary-Backup

31

Client BackupPrimary

1
1

1 Write
Write

Ack
Ack

Read

Read

If the primary fails,
the client reads from
the backup.

Primary-Backup

32

Client BackupPrimary

1
1

1 Write
Write

Ack
Ack

Read

Read

When primary fails

Backup becomes
new primary.

Backup handles all
reads/writes.

Primary recovers,
syncs state, can
become backup.

Primary-Backup

33

Client BackupPrimary

1
1

1 Write
Write

Ack
Ack

Read

Read

When backup fails

Primary handles all
reads/writes.

Backup recovers,
syncs state.

Fault tolerance
What if backup fails before primary recovers?

Data is unavailable, lost if failures permanent.

How can we tolerate 2 failures?
Use 2 backups.
Need f+1 servers to tolerate f failures.
Common practice is 3 copies but geographically separated.

What are we assuming about failures?

34

Fault models
Fail stop (primary-backup)

Machine stops executing immediately.
Can detect the failure.
Examples: power failure, OS crash.

Byzantine
Anything goes!
Server may send erroneous messages.
Server could be malicious/hacked.
Example: Servers differ on file contents. Which is correct?

35

Byzantine generals
All loyal generals decide upon the same plan of action.

Traitor may do anything they wish.

A small number of traitors cannot cause the loyal generals to adopt a
bad plan.

36

Source: Lamport et al, “The Byzantine Generals Problem”, https://people.eecs.berkeley.edu/~luca/cs174/byzantine.pdf

https://people.eecs.berkeley.edu/%7Eluca/cs174/byzantine.pdf

Byzantine generals
Say there’s one commander C and two lieutenants L1 and L2.

Goal: Decide whether to attack enemy or retreat.
Attack succeeds if at least 2 attack.
1 of the 3 is a traitor.

Naïve approach: L1 and L2 follow C’s command to either attack or
retreat.
Solution: C sends command to L1 and L2, who then exchange notes
and follow majority.

37

Byzantine generals
C sends command to L1 and L2, who then exchange notes and
follow majority

Case 1: L1 is traitor
C sends attack to both L1 and L2
L2 receives {attack, retreat}

Case 2: C is traitor
C sends attack to L1 and retreat to L2
L1 receives {attack, retreat}

38

Byzantine generals
Need at least 4 generals to cope with 1 traitor.

3f+1 generals to cope with f traitors.

Solution: C sends command to L1, L2, and L3, who then exchange
notes and follow majority.
Three cases:

C sends 3 attacks.
C sends 2 attacks, 1 retreat.
C sends 1 attack, 2 retreats.

39

	EECS 482 Introduction to Operating Systems�Spring/Summer 2020�Lecture 24: Distributed file systems
	Agenda
	Agenda
	Final exam
	Final exam policy
	Agenda
	Project 4
	Project 4 Testing
	Project 4 Testing
	Agenda
	Grading
	Grading
	Agenda
	Student evals
	Agenda
	Distributed file systems
	Caching for performance
	Client-side caching
	Handling writes with caching
	State machine for cached copy
	Invalidation protocol
	Order of operations
	Order of operations
	Optimistic concurrency control
	Conflicting operations
	Load balancing across servers
	Load balancing across servers
	Consistent hashing
	Adding a server
	Replication across servers
	Primary-Backup
	Primary-Backup
	Primary-Backup
	Fault tolerance
	Fault models
	Byzantine generals
	Byzantine generals
	Byzantine generals
	Byzantine generals

